وبلاگ تخصصی مهندسی مواد-جوشکاری - عیوب جوشکاری (welding defects)

Welding Defects

1. Introduction

Common weld defects include:

  • i. Lack of fusion
  • ii. Lack of penetration or excess penetration
  • iii. Porosity
  • iv. Inclusions
  • v. Cracking
  • vi. Undercut
  • vii. Lamellar tearing

Any of these defects are potentially disastorous as they can all give rise to high stress intensities which may result in sudden unexpected failure below the design load or in the case of cyclic loading, failure after fewer load cycles than predicted.

2. Types of Defects
i and ii.
- To achieve a good quality join it is essential that the fusion zone extends the full thickness of the sheets being joined. Thin sheet material can be joined with a single pass and a clean square edge will be a satisfactory basis for a join. However thicker material will normally need edges cut at a V angle and may need several passes to fill the V with weld metal. Where both sides are accessible one or more passes may be made along the reverse side to ensure the joint extends the full thickness of the metal.
Lack of fusion results from too little heat input and / or too rapid traverse of the welding torch (gas or electric).
Excess penetration arises from to high a heat input and / or too slow transverse of the welding torch (gas or electric). Excess penetration - burning through - is more of a problem with thin sheet as a higher level of skill is needed to balance heat input and torch traverse when welding thin metal.

ii. Porosity - This occurs when gases are trapped in the solidifying weld metal. These may arise from damp consumables or metal or, from dirt, particularly oil or grease, on the metal in the vicinity of the weld. This can be avoided by ensuring all consumables are stored in dry conditions and work is carefully cleaned and degreased prior to welding.

iv. Inclusions - These can occur when several runs are made along a V join when joining thick plate using flux cored or flux coated rods and the slag covering a run is not totally removed after every run before the following run.

v. Cracking - This can occur due just to thermal shrinkage or due to a combination of strain accompanying phase change and thermal shrinkage.
In the case of welded stiff frames, a combination of poor design and inappropriate procedure may result in high residual stresses and cracking.
Where alloy steels or steels with a carbon content greater than about 0.2% are being welded, self cooling may be rapid enough to cause some (brittle) martensite to form. This will easily develop cracks.
To prevent these problems a process of pre-heating in stages may be needed and after welding a slow controlled post cooling in stages will be required. This can greatly increase the cost of welded joins, but for high strength steels, such as those used in petrochemical plant and piping, there may well be no alternative.

Solidification Cracking
This is also called centreline or hot cracking. They are called hot cracks because they occur immediately after welds are completed and sometimes while the welds are being made. These defects, which are often caused by sulphur and phosphorus, are more likely to occur in higher carbon steels.
Solidification cracks are normally distinguishable from other types of cracks by the following features:

  • they occur only in the weld metal - although the parent metal is almost always the source of the low melting point contaminants associated with the cracking
  • they normally appear in straight lines along the centreline of the weld bead, but may occasionally appear as transverse cracking
  • solidification cracks in the final crater may have a branching appearance
  • as the cracks are 'open' they are visible to the naked eye  
    On breaking open the weld the crack surface may have a blue appearance, showing the cracks formed while the metal was still hot. The cracks form at the solidification boundaries and are characteristically inter dendritic. There may be evidence of segregation associated with the solidification boundary.
    The main cause of solidification cracking is that the weld bead in the final stage of solidification has insufficient strength to withstand the contraction stresses generated as the weld pool solidifies. Factors which increase the risk include:
  • insufficient weld bead size or inappropriate shape
  • welding under excessive restraint
  • material properties - such as a high impurity content or a relatively large shrinkage on solidification

Joint design can have an influence on the level of residual stresses. Large gaps between conponents will increase the strain on the solidifying weld metal, especially if the depth of penetration is small. Hence weld beads with a small depth to width ratio, such as is formed when bridging a large wide gap with a thin bead, will be more susceptible to solidification cracking.

In steels, cracking is associated with impurities, particularly sulphur and phosphorus and is promoted by carbon, whereas manganese and sulphur can help to reduce the risk. To minimise the risk of cracking, fillers with low carbon and impurity levels and a relatively high manganese content are preferred. As a general rule, for carbon manganese steels, the total sulphur and phosphorus content should be no greater than 0.06%. However when welding a highly restrained joint using high strength steels, a combined level below 0.03% might be needed.

Weld metal composition is dominated by the filler and as this is usually cleaner than the metal being welded, cracking is less likely with low dilution processes such as MMA and MIG. Parent metal composition becomes more important with autogenous welding techniques, such as TIG with no filler.

Avoiding Solidification Cracking
Apart from choice of material and filler, the main techniques for avoiding solidification cracking are:

  • control the joint fit up to reduce the gaps
  • clean off all contaminants before welding
  • ensure that the welding sequence will not lead to a buildup of thermally induced stresses
  • choose welding parameters to produce a weld bead with adequate depth to width ratio or with sufficient throat thickness (fillet weld) to ensure the bead has sufficient resistance to solidificatiuon stresses. Recommended minimum depth to width ratio is 0.5:1
  • avoid producing too large a depth to width ratio which will encourage segregation and excessive transverse strains. As a rule, weld beads with a depth to width ratio exceeds 2:1 will be prone to solidification cracking
  • avoid high welding speeds (at high current levels) which increase segregation and stress levels accross the weld bead
  • at the run stop, ensure adequate filling of the crater to avoid an unfavourable concave shape

Hydrogen induced cracking (HIC) - also referred to as hydrogen cracking or hydrogen assisted cracking, can occur in steels during manufacture, during fabrication or during service. When HIC occurs as a result of welding, the cracks are in the heat affected zone (HAZ) or in the weld metal itself.

Four requirements for HIC to occur are:

  • a) Hydrogen be present, this may come from moisture in any flux or from other sources. It is absorbed by the weld pool and diffuses int o the HAZ.
  • b) A HAZ microstructure susceptible to hydrogen cracking.
  • c) Tensile stresses act on the weld
  • d) The assembly has cooled to close to ambient - less than 150oC

HIC in the HAZ is often at the weld toe, but can be under the weld bead or at the weld root. In fillet welds cracks are normally parallel to the weld run but in butt welds cracks can be transverse to the welding direction.

vi Undercutting - In this case the thickness of one (or both) of the sheets is reduced at the toe of the weld. This is due to incorrect settings / procedure. There is already a stress concentration at the toe of the weld and any undercut will reduce the strength of the join.

vii Lamellar tearing - This is mainly a problem with low quality steels. It occurs in plate that has a low ductility in the through thickness direction, which is caused by non metallic inclusions, such as suphides and oxides that have been elongated during the rolling process. These inclusions mean that the plate can not tolerate the contraction stresses in the short transverse direction.
Lamellar tearing can occur in both fillet and butt welds, but the most vulnerable joints are 'T' and corner joints, where the fusion boundary is parallel to the rolling plane.
These problem can be overcome by using better quality steel, 'buttering' the weld area with a ductile material and possibly by redesigning the joint.


By: Mohammad Reza Anvari

نوشته شده توسط محمد رضا انوری در جمعه سیزدهم مهر 1386 ساعت 8:19 | لینک ثابت |

Powered by WebGozar

business article